
No. 18-956 

IN THE 

Supreme Court of the United States 

GOOGLE LLC, 
Petitioner, 

v. 

ORACLE AMERICA, INC., 
Respondent. 

On Writ of Certiorari  
to the United States Court of Appeals 

for the Federal Circuit 

BRIEF FOR SYNOPSYS, INC.  
AS AMICUS CURIAE  

SUPPORTING RESPONDENT 

I. NEEL CHATTERJEE

GOODWIN PROCTER LLP
601 Marshall Street
Redwood City, CA 94063

WILLIAM M. JAY 
    Counsel of Record 
ANDREW KIM 
GOODWIN PROCTER LLP 
1900 N Street, N.W. 
Washington, DC 20036 
wjay@goodwinlaw.com 
(202) 346-4000

February 19, 2020 



 

 

TABLE OF CONTENTS 

PAGE 

INTEREST OF THE AMICUS CURIAE .................... 1 

SUMMARY OF ARGUMENT ..................................... 4 

ARGUMENT ............................................................... 6 

I.  Oracle’s declaring code is copyrightable 
expression. .............................................................. 6 

A.  The “statements and instructions” used in 
computer software are copyrightable as 
original, creative expression. ........................... 6 

B.  This is a case about creative expression  
used to achieve a particular function,  
not the function itself. ...................................... 8 

C.  “Merger” does not apply simply because a 
popular and efficient expression of code is  
the only one that is currently in use. ............. 11 

D.  The organization and structure of code are 
also protected by copyright. ........................... 16 

II.  Google’s wholesale copying and use of Oracle’s 
code was not fair use. ........................................... 17 



 
 

ii 

A.  It is not fair use to employ an expression 
exactly as it was intended and change the 
platform in which the expression is made. .... 19 

B.  Fair use looks to whether the copied code  
was “substantial,” which requires more  
than a quantitative comparison. .................... 24 

C.  Using a protected expression for a  
product introduced into a new market  
is not fair use. ................................................. 25 

CONCLUSION .......................................................... 28 

 

  



 
 

iii 

TABLE OF AUTHORITIES 

 PAGE(S) 

CASES 

Am. Dental Ass’n v.  
Delta Dental Plans Ass’n, 
126 F.3d 977 (7th Cir. 1997) ............................. 17 

Applied Innovations, Inc. v.  
Regents of Univ. of Minn., 
876 F.2d 626 (8th Cir. 1989) ............................... 9 

ATC Distrib. Grp., Inc. v.  
Whatever It Takes  
Transmissions & Parts, Inc., 
402 F.3d 700 (6th Cir. 2005) ............................. 17 

Authors Guild v. Google, Inc., 
804 F.3d 202 (2d Cir. 2015) .............................. 22 

Baker v. Selden, 
101 U.S. 99 (1879) ....................................... 11, 12 

Campbell v. Acuff-Rose Music, Inc., 
510 U.S. 569 (1994) ..................................... 19, 20 

Cariou v. Prince, 
714 F.3d 694 (2d Cir. 2013) .............................. 18 

Computer Assocs. Int’l, Inc. v. Altai, Inc., 
982 F.2d 693 (2d Cir. 1992) .................. 13, 15, 16 



 
 

iv 

Dun & Bradstreet Software Servs., Inc. v. 
Grace Consulting, Inc., 
307 F.3d 197 (3d Cir. 2002) .......................... 8, 16 

Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 
499 U.S. 340 (1991) ......................... 12, 16, 17, 27 

Harper & Row, Publishers, Inc. v.  
Nation Enters., 
471 U.S. 539 (1985) ......................... 17, 24, 25, 27 

Herbert Rosenthal Jewelry Corp. v. 
Kalpakian, 
446 F.2d 738 (9th Cir. 1971) ............................. 11 

Higgins v. Keuffel, 
140 U.S. 428 (1891) ............................................. 9 

Johnson Controls, Inc. v.  
Phoenix Control Sys., Inc., 
886 F.2d 1173 (9th Cir. 1989) ............................. 8 

Kienitz v. Sconnie Nation LLC, 
766 F.3d 756 (7th Cir. 2014) ....................... 20, 23 

Mazer v. Stein, 
347 U.S. 201 (1954) ........................................... 12 

Sega Enters. Ltd. v. Accolade, Inc., 
977 F.2d 1510 (9th Cir. 1992) ..................... 13, 23 

Soc’y of Holy Transfiguration  
Monastery, Inc. v. Gregory, 
689 F.3d 29 (1st Cir. 2012) ................................. 9 



 
 

v 

Sony Computer Entm’t Inc. v.  
Connectix Corp., 
203 F.3d 596 (9th Cir. 2000) ............................. 23 

TCA Television Corp. v. McCollum, 
839 F.3d 168 (2d Cir. 2016) .................. 20, 21, 23 

Wall Data Inc. v. L.A. Cty. Sheriff’s Dep’t, 
447 F.3d 769 (9th Cir. 2006) ............................. 18 

Whelan Assocs., Inc. v.  
Jaslow Dental Lab., Inc., 
797 F.2d 1222 (3d Cir. 1986) ...................... 12, 16 

Zomba Enters., Inc. v.  
Panorama Records, Inc., 
491 F.3d 574 (6th Cir. 2007) ............................. 20 

CONSTITUTIONAL PROVISIONS AND STATUTES 

U.S. Const. art. I, § 8, cl. 8 ....................................... 4 

17 U.S.C. § 101 ................................................... 7, 21 

17 U.S.C. § 102 ........................................... 6, 7, 9, 16 

17 U.S.C. § 106 ................................................. 23, 24 

17 U.S.C. § 107 ..................................... 17, 20, 24, 26 

17 U.S.C. § 117 (Supp. IV 1980) .............................. 7 

Act of Dec. 12, 1980,  
Pub. L. No. 96-517, § 10, 94 Stat. 3028 .............. 7 



 
 

vi 

Act of Dec. 31, 1974,  
Pub. L. No. 93-573, § 201(b)(1)(A),  
88 Stat. 1873 ....................................................... 6 

OTHER AUTHORITIES 

Final Report of the National Commission  
on New Technological Uses of 
Copyrighted Works (1979) ..........................passim 

H.R. Rep. No. 96-1307(II) (1980) ............................. 7 

H.R. Rep. No. 94-1476 (1976) ................................... 6 

Brett N. Dorny & Michael K. Friedland, 
Copyrighting “Look and Feel”: 
Manufacturing Technologies v. CAMS,  
3 Harv. J. L. & Tech. 195 (1990) ...................... 26 

Sandra Gonzalez, How Amazon’s ‘Man in 
the High Castle’ Honors (and Deviates 
From) Its Source Material, Mashable 
(Oct. 10, 2015), 
https://mashable.com/2015/10/10/man-
in-the-high-castle-2/. ......................................... 22 

Mark A. Lemley,  
Convergence in the Law of Software 
Copyright? 10 High Tech. L.J. 1 (1995) ............ 15 

Ronald J. Mann, Do Patents Facilitate 
Financing in the Software Industry?  
83 Tex. L. Rev. 961 (2005) ................................ 15 



 
 

vii 

Stephen J. Mellor et al., Why Systems-on-
Chip Needs More UML Like a Hole in the 
Head, in UML for SOC Design  
(Grant Martin ed., 2005) ................................... 14 

Oracle, The Java Tutorials:  
Defining Methods, 
https://docs.oracle.com/javase/tutorial/ 
java/javaOO/methods.html ................................. 9 

William F. Patry,  
Patry on Copyright (2019) ........................... 11, 21 

Eric S. Raymond,  
The New Hacker’s Dictionary  
(3d ed. 1996) ...................................................... 15 

Matthew J. Sottile et al.,  
Introduction to Concurrency in 
Programming Languages (2009) ...................... 14 

 



 

INTEREST OF THE AMICUS CURIAE1 

Synopsys, Inc. is one of the largest software com-
panies in the world.  The company is a leading pro-
vider of a suite of software products used for electronic 
design automation (EDA).   Synopsys’ EDA software 
is used to design and test computer chips used in all 
kinds of computing devices, ranging from computers 
to smartphones to automobiles to televisions.  The 
company’s customers include virtually all semicon-
ductor companies in the world, including all of the top 
20 semiconductor companies (such as Intel, Samsung, 
and Qualcomm). 

Synopsys’ software products are highly sophisti-
cated computer programs that contain a great deal of 
creative expression.  Synopsys calls its series of in-
structions within a particular product a “command 
set.”  A command set is what a circuit designer uses to 
communicate with Synopsys’ highly complex com-
puter programs.  Synopsys’ command sets are similar 
to the “declaring code” at issue in this appeal. 

One software product line—the “synthesis” prod-
uct—allows chip designers to create an abstract con-
cept of what the chip’s capabilities should be.  From 
there, the product will transform the abstraction into 
a layout of the chip, which is a form of a “blueprint” 
often consisting of hundreds of millions of compo-
nents.   The software will then optimize this layout 

                                                 
1 All parties have consented to the filing of this brief.  No counsel 
for a party authored any part of this brief, and no such counsel 
or party made a monetary contribution intended to fund the 
preparation or submission of this brief.  No person other than 
amicus curiae and its counsel made a monetary contribution to 
the brief’s preparation or submission.   



 
 

2 

according to the desired goals of the chip designer, 
such as the size and speed of the chip, and how much 
power the chip consumes.  Chip designers specify 
these detailed goals using a series of commands with 
parameters.  The underlying code implements the in-
structions.  

Another software product line—the “signoff” prod-
uct—allows a chip designer to independently verify 
that a chip design will work as intended.  This soft-
ware evaluates how well a chip design will perform 
based on certain metrics, and whether a design may 
have vulnerabilities that were previously unknown 
and unanticipated.  Much like the synthesis software, 
the signoff software has a set of Synopsys-created 
commands that chip designers use to carry out these 
functions.  The underlying implementing code then 
carries out the instructions of the commands.  The 
command sets are harmonized across products so that 
users familiar with the commands for one product line 
can use another.  It is this approach—one that uses 
familiar and shared language choices—that gives 
Synopsys a competitive edge. 

Synopsys invested hundreds of millions of dollars 
to develop its suite of products.  Because chip design 
is a very complex process, the effectiveness and effi-
ciency of the command set is important and has a 
large impact on what can be done with the tooling.  
Through painstaking research and development, Syn-
opsys developed a comprehensive universe of com-
mands, options to commands, parameters, objects, 
and attributes for these software products.  Synopsys 
continues to refine its command sets with each new 
successive generation of technology.  Engineers prefer 
Synopsys’ tools in part because similar command sets 



 
 

3 

can be used through different stages of chip develop-
ment, and its commands have proven to be effective 
and successful on many chip design projects over time.  
As a result, customers become familiar with the “Syn-
opsys” way of expressing commands and continue to 
use Synopsys.  Synopsys’ command set (and the ex-
pressions therein) were so popular and familiar, a 
competitor decided to copy them for its own software 
product.  Synopsys, Inc. v. Atoptech, Inc., No. 13-cv-
2965 (N.D. Cal.).  Synopsys was forced to engage in 
costly copyright litigation to protect the unique ex-
pressions used in its software.  After three years, it 
successfully stopped the competitor’s infringing prod-
ucts.  But Synopsys lost sales to important customers 
during that time and was only able to regain it after 
spending millions of dollars to ensure the infringing 
products were taken off the market.  Permanent In-
junction and Disposition Order, ECF No. 929, Synop-
sys, Inc. v. Atoptech, Inc., No. 13-cv-2965 (N.D. Cal. 
Dec. 19, 2016). 

Synopsys submits this amicus brief to challenge 
the notion, offered by Google and its amici, that the 
copying of someone else’s code is a mainstay of the 
computer programming world.  It is simply not true 
that “everybody does it,” and that software piracy al-
lows for lawful innovative entrepreneurship, as 
Google suggests.  Google’s proposed re-interpretation 
of copyright law would strip software developers of 
their ability to protect their unique expressions.   

Google further argues that computer code is purely 
functional with no originality or expression to protect.  
Worse, Google argues that to the extent there is any 
originality in code, its protection should be jettisoned 
in the spirit of “innovation”—essentially, “we can 



 
 

4 

compete better through theft.” As explained below, 
Google’s arguments ask this Court to turn a blind eye 
to the plain text of the Copyright Act, as well as this 
Court’s own caselaw. 

Synopsys’ own experience demonstrates that com-
puter code contains significant originality and expres-
siveness which is deserving of copyright protection.  
Treating code as unprotectable, through merger or 
fair use, would stifle innovation and creativity—not 
promote it.  In the world of computer programming, 
creativity and innovation come at a cost.  Stripped of 
the assurance that creative code will be rewarded and 
protected, software developers may not spend the con-
siderable time and resources necessary to create new 
and innovative software.  Google’s proposed rule 
would impede, not promote, “the Progress of Science 
and useful Arts.”  U.S. Const. art. I, § 8, cl. 8. 

SUMMARY OF ARGUMENT 

I. The Copyright Act protects “computer 
programs” as “literary works.”  This protection 
extends beyond the finished software or application.    
Copyright law also protects compositions of code that 
are used as part of software, when there are multiple 
ways to express the idea or function implemented by 
the code.  Google does not dispute this, but it argues 
that Oracle is trying to copyright the underlying 
functionality.  That is wrong.  Oracle is seeking 
protection for a set of valuable declaring code and its 
creative word choices that name and describe the 
functions to be performed.  There is more than one 
way to name and describe a function as well as a series 
of functions; the particular way that Oracle has 
selected in its declaring code is expressive and thus 
protectable.  So too is the structure of Oracle’s 



 
 

5 

programming library:  there is originality and 
creativity in how Oracle has structured its different 
pieces of component code.   

II. Taking protected works of code and using them 
exactly as the copyright owner intended to create a 
competing commercial product is not “fair use.”  
Google claims that its use is fair and “transformative” 
because Oracle’s declarations are being used in two 
different products:  Oracle’s desktop software and 
Google’s mobile device operating system.  But 
changing the context in which a copyrighted work is 
used does not make a work “transformative.”  The 
relevant question for fair use is how the copyrighted 
work is used, not where it is used.  If the code does 
exactly the same thing in Google’s product as it does 
in Oracle’s, then the “purpose and character” of the 
code has not changed.  Moreover, Google’s vision of 
fair use would allow a competitor to reverse-engineer 
original software, pilfer the best pieces of code, create 
new software based on the copied code, and use the 
stolen code to compete against the original creator.  
This, according to Google, promotes innovation in 
software development.  But as the drafters of 
computer copyright laws have recognized and as 
Synopsys has recognized through its own experience, 
the promotion of innovation requires exactly the 
opposite:  protecting the original creator’s ability to 



 
 

6 

access the market so that the creator may reap the 
rewards of its innovation. 

ARGUMENT 

I. Oracle’s declaring code is copyrightable ex-
pression. 

A. The “statements and instructions” used 
in computer software are copyrightable 
as original, creative expression.     

The Copyright Act of 1976 extends copyright pro-
tections to “literary works.”  17 U.S.C. § 102(a)(1).  
When Congress enacted the Act, it understood “liter-
ary works” to “include[] computer data bases, and 
computer programs to the extent that they incorpo-
rate authorship in the programmer’s expression of 
original ideas, as distinguished from the ideas them-
selves.”  H.R. Rep. No. 94-1476, at 54 (1976), reprinted 
in 1976 U.S.C.C.A.N. 5659, 5667.   

The 1976 Act left a placeholder for future develop-
ments in computer copyright law.  Those develop-
ments were to be guided by the National Commission 
on the New Technological Uses of Copyrighted Works 
(CONTU), which Congress formed to explore how cop-
yright law could protect “works of authorship . . . in 
conjunction with automatic systems capable of stor-
ing, processing, retrieving, and transferring infor-
mation.”  Act of Dec. 31, 1974, Pub. L. No. 93-573, 
§ 201(b)(1)(A), 88 Stat. 1873.   

CONTU, however, determined that computer pro-
grams required no additional protection, as they were 
already protected by coverage for other types of ex-
pressive works.  CONTU, Final Report of the National 
Commission on New Technological Uses of 



 
 

7 

Copyrighted Works 1 (1979) (“CONTU Report”) 
(“Works created by the use of computers should be af-
forded copyright protection if they are original works 
of authorship within [the 1976 Act].”).  So when Con-
gress followed up on CONTU’s recommendations in 
1980,2 it did not see the need to provide special protec-
tions for “computer programs.”  See H.R. Rep. No. 96-
1307(II), at 19 (1980), reprinted in 1980 U.S.C.C.A.N. 
6492, 6509 (Act’s purpose was to “clearly apply[] the 
1976 law to computer programs”).  Rather, it created 
a limited exception (not at issue here) to the exclusive 
right to copy a copyrighted “computer program.”  See 
17 U.S.C. § 117 (Supp. IV 1980). 

Congress accordingly had to define a copyrightable 
“computer program.”  It adopted a broad definition: a 
“computer program” is  “a set of statements or instruc-
tions to be used directly or indirectly in a computer in 
order to bring about a certain result.”  17 U.S.C. § 101.  
So if “computer programs” are “literary works,” id. 
§ 102(a), the Copyright Act’s protections extend to any 
arrangement of code if that arrangement includes 
more than one “statement[]” or instruction[],” and the 
arrangement “bring[s] about a certain result.” 

Like every other copyrightable work, a “computer 
program” is protectable only to the extent that it is an 
expression—the “idea, procedure, process, system, 
method of operation, concept, principle, or discovery” 
itself cannot be copyrighted.  17 U.S.C. § 102(b).  
CONTU acknowledged that copyright “protects the 
program so long as it remains fixed in a tangible me-
dium of expression but does not protect the electro-
mechanical functioning of the machine.”  CONTU 
                                                 
2 Act of Dec. 12, 1980, Pub. L. No. 96-517, § 10, 94 Stat. 3028. 



 
 

8 

Report 20.  If there were only one set of “specific in-
structions” that could carry out a particular idea, 
CONTU concluded it would be a “logical extension of 
the fundamental principle that copyright cannot pro-
tect ideas” to treat those instructions as uncopyright-
able.  Id.  But “[w]hen other language is available,” 
CONTU acknowledged that a program can be copy-
righted; CONTU stated that other programmers could 
only “read copyrighted programs and use the ideas 
embodied in them” to “prepar[e] their own works.”  Id. 

Because “computer program” is so broadly defined, 
the Copyright Act’s protections for “computer pro-
grams” go beyond the end user’s application software.  
Certain literal components within application soft-
ware are protectable expression—for example, the 
commands that allow users to instruct the application 
on what to do and what task to perform.  E.g., Dun & 
Bradstreet Software Servs., Inc. v. Grace Consulting, 
Inc., 307 F.3d 197, 214 (3d Cir. 2002) (holding that the 
commands used by a program for preparing employee 
W-2s are copyrightable).  The non-literal components 
of a computer program, such as the “structure, se-
quence, and/or organization of [a] program” can also 
be expressive and copyrightable.  E.g., Johnson Con-
trols, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 
1175 (9th Cir. 1989).   

B. This is a case about creative expression 
used to achieve a particular function, not 
the function itself. 

Google does not dispute that copyright protections 
should extend to code.  Google Br. 25 (arguing that 
implementing code is protectable creative expression).  
But it claims that Oracle’s declarations cannot be 



 
 

9 

expressive because they are meant to do one thing:  
they function as a means of calling up implementing 
code.  Id. at 20.  Because declarations serve a function, 
Google argues, they are uncopyrightable “methods of 
operation” under § 102(b).  Id.  

Google’s argument misses the point:  Oracle’s dec-
larations are not the functions themselves; rather, 
they are Oracle’s creative expressions of how to carry 
out particular functions.  The  purpose of each portion 
of declaring code is to provide, among other things, a 
name for the method, the names of the variables to be 
used, and a description of when the function can or 
should be used.  Oracle, The Java Tutorials:  Defining 
Methods, https://docs.oracle.com/javase/tutorial/java/
javaOO/methods.html.  The words are used together 
in a unique and meaningful sentence, and each set of 
declaring code uniquely expresses a set of activities.  
And the set of declaring code collectively creates mul-
tiple expressions for multiple activities. Oracle’s code 
goes beyond “mere labels”:  each declaration is a com-
position that is “intended to instruct” on the function 
to be carried out.  Higgins v. Keuffel, 140 U.S. 428, 
431-32 (1891).  An individual work of declaring code 
has creativity in it that can be considered protectable 
creative expression.  See Applied Innovations, Inc. v. 
Regents of Univ. of Minn., 876 F.2d 626, 634-35 (8th 
Cir. 1989) (concluding that 550 “short, simple declar-
ative sentences” are copyrightable); Soc’y of Holy 
Transfiguration Monastery, Inc. v. Gregory, 689 F.3d 
29, 50-52 (1st Cir. 2012) (“not all short phrases will 
automatically be deemed uncopyrightable”).  There is 
creativity involved in crafting almost every part of a 
declaration.  Take one aspect of Google’s example of 
the declaring code for determining the larger of two 



 
 

10 

integers:  the name of the declaration 
java.lang.Math.max.  Google Br. 6.  Oracle decided 
that the best name for the function is max.  Java de-
velopers, including Google’s programmers, grew ac-
customed to using that nomenclature.  But Oracle—
or Google—could have called that function LargeInt 
(larger integer), GreaterInt (greater of the two inte-
gers), HighestNumber, MaxNumber, or a variety of 
other conventions to accomplish the same thing.  Or-
acle is not trying to copyright the concept of taking the 
larger of two integers—it is instead seeking to copy-
right how that function is expressed, including the 
name that Oracle has selected for that function. 

In Synopsys’ own experience, users value thought-
fulness and creativity in coding, even for relatively mi-
nute aspects such as the names of commands.  Synop-
sys expended considerable resources to develop com-
mands that are familiar to chip designers and effi-
ciently expedite chip development.  For example, in 
Synopsys’ PrimeTime timing analysis software, users 
conducting timing tests can instruct the software to 
make a certain assumption about a change in the volt-
age rate over time (the slew rate) if one variable (the 
drive resistance) is lower than the other (network im-
pedance).  The command to call up that assumption is: 

rc_degrade_min_slew_when_rd_less_than_rnet. 

Here, “degrade_min_slew” refers to the function to be 
performed (an assumption about a change in the slew 
rate), and “rd” and “rnet” refer to the two variables, 
drive resistance and network impedance.  “Less than” 
is a description of when the assumption should be 
made, i.e., when one variable is lower than the other.   



 
 

11 

Synopsys did not need to assign this particular 
name to this particular function.  It could have named 
the command  (1) threshold_resistance_ratio_drivenet, 
(2) dnr_ratio_thresh, (3) rndr_adjust_limit, or (4) ac-
curacy_threshold_ratio, among other expressions.  
But Synopsys named this particular function in a way 
it believed struck the right balance between accurate 
description and efficiency.  That is a creative expres-
sion deserving of copyright protection. 

C. “Merger” does not apply simply because a 
popular and efficient expression of code 
is the only one that is currently in use.    

1. Google’s copyrightability argument is ulti-
mately about efficiency:  if a developer creates an ex-
pression for a function, the expression enters common 
usage, and no one else develops an alternative expres-
sion, the expression becomes uncopyrightable because 
programmers should not be required to start over and 
create new expressions from scratch.  Google Br. 27, 
29 (Sun “made only one expressive choice,” and pro-
tecting that choice against unlicensed copying would 
force “Java developers to learn thousands of new calls 
to replace those they already know”).  Google claims 
that, under the doctrine of merger,3 the lone 
                                                 
3 At the outset, there is some doubt as to whether there is a “mer-
ger” doctrine at all.  Citing this Court’s decision in Baker v. Sel-
den, 101 U.S. 99 (1879), courts have crafted a “merger” rule based 
on the idea/expression distinction:  when an idea and expression 
are “inseparable,” the two merge together, and the expression be-
come uncopyrightable.  Herbert Rosenthal Jewelry Corp. v. Kal-
pakian, 446 F.2d 738, 742 (9th Cir. 1971).  But the problem with 
this so-called doctrine is that Baker never mentions it—that case 
was about whether a copyright in a book describing an account-
ing system extends protections for the system itself.  William F. 
Patry, 2 Patry on Copyright § 4:46 (2019) (casting merger as 



 
 

12 

expression is uncopyrightable because there is no 
other way of expressing the function.  Id. at 30-31.  
But nothing in copyright law, not even “merger,” al-
lows the creative laziness of copiers to determine the 
copyrightability of works that otherwise should be 
protected. 

“Merger” requires Google to establish that no one 
can develop another expression, which Google has 
failed to demonstrate.  Whelan Assocs., Inc. v. Jaslow 
Dental Lab., Inc., 797 F.2d 1222, 1236 (3d Cir. 1986) 
(“everything that is not necessary to the purpose or 
function” of a computer program is “part of the expres-
sion of the idea”).  All Google has argued is that no one 
has developed another expression.  As the Federal 
Circuit correctly observed, “nothing prevented Google 
from writing its own declaring code, along with its 
own implementing code, to achieve the same result [as 
Oracle’s declaring code].”  Pet App. 151-152a.  “Be-
cause alternative expressions were available, there is 
no merger.”  Id. at 151a (citation omitted). 

                                                 
“merely a judgment that there is a lack of originality”).  CONTU 
itself recognized that Baker’s holding “is often misconstrued as 
imposing a limit on the copyrightability of works which express 
ideas, systems, or processes.”  CONTU Report 19.  According to 
CONTU, Baker “properly stands for the proposition that using 
the system does not infringe the copyright in the description.”  
Id. (emphasis added).  CONTU believed “the rationale for the 
doctrine of Baker v. Selden in no event justifies the denial of cop-
yrightability to any work.”  Id. (quoting 1 Nimmer on Copyright 
§ 37.31 (1976)).  This accords with how this Court has described 
Baker’s holding.  See Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 
499 U.S. 340, 350 (1991); Mazer v. Stein, 347 U.S. 201, 217 
(1954).  And to the extent that Baker speaks to originality, Google 
has conceded that issue. 



 
 

13 

2.  Google contends that “merger” should apply be-
cause it would be inefficient to require programmers 
to rewrite existing tools from scratch.  Google Br. 26.  
But efficiency should play no role in determining 
whether there is only one expression of an idea.  
Google’s misplaced focus on efficiency—which is not 
part of the copyrightability analysis—may stem from 
decisions from the courts of appeals that discuss the 
“industry-wide goal” of efficiency in computer pro-
gramming as part of the merger analysis.  See, e.g., 
Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 
708 (2d Cir. 1992); see also Sega Enters. Ltd. v. Acco-
lade, Inc., 977 F.2d 1510, 1525 (9th Cir. 1992) (as com-
puter programs are “essentially utilitarian,” “many 
aspects of the program are not protected by copy-
right”).  Altai and cases that follow it reason that 
“there may be only a limited number of efficient im-
plementations for any given program tasks,” so “mul-
tiple programmers, working independently, will de-
sign the identical method employed in the allegedly 
infringed work.”  982 F.2d at 708.  Because “efficiency 
concerns may so narrow the practical range of choice 
as to make only one or two forms of expression work-
able options,” the one or two forms of expression that 
are typically used are considered by these courts to be 
uncopyrightable under the merger doctrine.  Id.   

To be clear, even Altai would not save Google from 
an infringement claim here:  Altai merely observes 
that programmers may independently arrive at the 
same expression, while Google advocates for a copy-
rightability standard by which it can deliberately 
steal other programmers’ code.  But even the Second 
Circuit’s efficiency-driven analysis is unrealistic—in 
particular, the assumption that there is only one 



 
 

14 

efficient way to code something.  There are many as-
pects of computer software that can be expressed in 
multiple ways.  Naming a command that performs a 
specific function is just one example.  See supra pp. 9-
11.  Implementing code provides another.  An instruc-
tion, for example, that is designed to detect whether a 
letter is a vowel can be written as: 

if (letter == ‘a’ || letter == ‘e’ ||letter == ‘i’ [] letter 
== ‘o’ || letter == ‘u’) { 

 puts(“That letter is a vowel.”); 

} else {  

 puts(“That letter is not a vowel.”); 

} 

But the same instruction can be written as: 

switch (letter) { 

case ‘a’ : case ‘e’: case ‘i’:  case ‘o’:  case ‘u’: 

 puts(“That letter is a vowel.”); 

 break; 

default: 

 puts(“That letter is not a vowel.”); 

} 

Indeed, there are different schools of thought on how 
code should be expressed.  Proponents of “syntactic 
sugar” favor the use of programming shorthand, 
which presents a function in a shorter, more aestheti-
cally pleasing format.  See Matthew J. Sottile et al., 
Introduction to Concurrency in Programming Lan-
guages 151 (2009); see also Stephen J. Mellor et al., 
Why Systems-on-Chip Needs More UML Like a Hole in 



 
 

15 

the Head, in UML for SOC Design 23 (Grant Martin 
ed., 2005) (describing syntactic sugar as “a sweeter 
way of expressing the same thing,” and noting that 
discerning “which one is syntactic sugar, and which 
the one true way of expressing the statement is often 
a matter of heated debate”).  Advocates for “syntactic 
salt,” by contrast, favor the “showing of work.”  In-
stead of using shorthand for a certain action, the pro-
grammer spells out everything that is necessary for a 
script to be understood and carried out, so as to avoid 
the possibility of writing “bad code.”  Eric S. Raymond, 
The New Hacker’s Dictionary 431 (3d ed. 1996).  These 
two schools of thought suggest that for many pro-
grammed functions, there is more than one way of ex-
pressing the function and that there is no uniform 
view as to what is truly “efficient.”  As with all literary 
works, the quality is subjective based upon the artistic 
choices of the coder. 

The Second Circuit’s obsolete understanding of 
how computer programming works led to its creation 
of a confusing merger test that has severely limited 
the universe of protectable code.4  See Mark A. Lem-
ley, Convergence in the Law of Software Copyright?  10 
High Tech. L.J. 1, 14 (1995) (recounting two lawyers’ 
descriptions of the Second Circuit’s test as a “legal 
Chernobyl” that “complicated the simple and con-
founded the complex”); Ronald J. Mann, Do Patents 

                                                 
4 Under this test, “a court would first break down the allegedly 
infringed program into its constituent structural parts.  Then, by 
examining each of these parts for such things as incorporated 
ideas, expression that is necessarily incidental to those ideas, 
and elements taken from the public domain, a court would be 
able to sift out all non-protectable material.”  Computer Assocs. 
Int’l, Inc. v. Altai, 982 F.2d 693, 706 (2d Cir. 1992).   



 
 

16 

Facilitate Financing in the Software Industry?  83 
Tex. L. Rev. 961, 971 (2005) (Altai “made it difficult to 
obtain copyright protection for the broader structural 
features of programs”).  Although Google’s merger ar-
guments fail under any understanding of the “doc-
trine,” this Court should reject any framework that 
has a restrictive view of whether code can be “expres-
sive.”  All that the Copyright Act requires is that there 
be more than one expression of an idea.  Thus, “every-
thing that is not necessary to the purpose or function” 
should be treated as protectable expression.  Whelan 
Assocs., 797 F.2d at 1236; see also Dun & Bradstreet, 
307 F.3d at 216 (rejecting Altai’s “doctrine of external-
ities”). 

D. The organization and structure of code 
are also protected by copyright.   

Google also challenges the copyrightability of 
“[t]he organizational system of the Java SE libraries.”  
Google Br. 19.  How Oracle chooses to arrange its code, 
Google contends, is merely a “system” that is ex-
pressly left unprotected under § 102(b).  Id. 

Google’s argument continues to confuse the idea—
here, the “system”—with an expression of that idea.  
See Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 
340, 356 (1991) (section 102(b) merely “restate[s] [] 
the basic dichotomy between expression and idea,” 
and does not “enlarge[] or contract[] the scope of copy-
right protection” (citation omitted)).  As the Federal 
Circuit explained, the Java library is like a protecta-
ble taxonomy, a method of organizing “over six thou-
sand commands to carry out pre-assigned functions.”  
Pet. App. 162a.  Oracle’s code will not organize itself, 
and there is more than one way of organizing it.  



 
 

17 

“Classification is a creative endeavor,” Am. Dental 
Ass’n v. Delta Dental Plans Ass’n, 126 F.3d 977, 979 
(7th Cir. 1997), and there is “creative thought” that 
goes into an “underlying taxonomy.”  ATC Distrib. 
Grp., Inc. v. Whatever It Takes Transmissions & Parts, 
Inc., 402 F.3d 700, 708 (6th Cir. 2005); see also Feist, 
499 U.S. at 348 (noting that there are creative “choices 
as to selection and arrangement”).  That Oracle’s li-
brary collects and organizes expressions does not 
make it into a “system,” and it also does not change 
the answer to the copyrightability question—there is 
still creativity in how those expressions are to be or-
ganized.  See Am. Dental Ass’n, 126 F.3d at 980-81 (ob-
serving that a word processor is not a “system” “just 
because it has a command structure for producing 
paragraphs”).   

II. Google’s wholesale copying and use of Ora-
cle’s code was not fair use.   

Commercial plagiarism is the worst form of piracy, 
and fair use does not excuse it.  Whether the use of a 
work is “fair” depends on four nonexclusive factors:  
“(1) the purpose and character of the use; (2) the na-
ture of the copyrighted work; (3) the substantiality of 
the portion used in relation to the copyrighted work 
as a whole; [and] (4) the effect on the potential market 
for or value of the copyrighted work.”  Harper & Row, 
Publishers, Inc. v. Nation Enters., 471 U.S. 539, 560-
61 (1985).   

While the four factors may be nonexclusive, they 
are expressly in the fair use statute.  17 U.S.C. § 107.  
What is not in the statute are two additional consid-
erations that Google seeks to include as part of the fair 
use inquiry:  (1) whether “the custom or public policy 



 
 

18 

at the time would have defined the use as reasonable,” 
Google Br. 38 (citation omitted); and (2) whether “the 
reuse of a small amount of low-value expression 
. . . would unleash a large amount of high-value ex-
pression,” id. at 39.  Since the codification of the fair-
use factors, the first consideration has never been the 
basis of any fair-use decision.5  And the comparative 
judgments of the second consideration—that the use 
of a copied expression in a secondary work is more 
“valuable” than the use of the expression in the origi-
nal work—has never been part of the fair-use inquiry 
at all.  The value added by a secondary use has only 
been relevant insofar as it demonstrates that the sec-
ondary work has “a different manner or [] a different 
purpose from the original.”  Cariou v. Prince, 714 F.3d 
694, 706 (2d Cir. 2013).   

Google offers three reasons why its use of Oracle’s 
code was fair:  (1) Oracle intended for the code to be 
used for desktop software, while Google is using it for 
mobile devices; (2) Google took only code that was nec-
essary for its product; and (3) Oracle’s code allowed 
Google to introduce an “innovative” new product into 
the smartphone market, a market that was untapped 
by Oracle.  But none of these reasons is statutory fair 
use that excuses Google’s copying of Oracle’s declaring 
code:  (1) the change of format from desktops to mobile 
devices does not change the “purpose” of Oracle’s cop-
yrighted work; (2) Google’s use of Oracle’s code was 
                                                 
5 One court has stated in dicta that courts should “bear in mind” 
the “custom or public policy” associated with the copyrighted 
work—but that court never looked to an actual custom or policy 
to discern fair use (and even held there was no fair use in that 
case).  Wall Data Inc. v. L.A. Cty. Sheriff’s Dep’t, 447 F.3d 769, 
778 (9th Cir. 2006).   



 
 

19 

not “insubstantial”; and (3) fair use should never allow 
a work to be copied for the purpose of being used as 
part of a competing product.     

A. It is not fair use to employ an expres-
sion exactly as it was intended and 
change the platform in which the ex-
pression is made.   

Google claims that its use of Oracle’s code was fair 
because the work that it created by copying that 
code—the Android operating system—was “innova-
tive,” “revolutionary,” and unlike any other use of 
Java.  Google Br. 43-44.  But as the Federal Circuit 
pointed out, whether the end result is “innovative” has 
nothing to do with whether the use of the copyrighted 
work was fair.  Pet. App. 33a-36a.  Because Google 
conceded here that its code and Oracle’s code “serve[d] 
the same function,” id. at 30a, Google’s use of Oracle’s 
code was derivative, not fair.  Id. at 35a. 

A copied work can be “fairly” used if the secondary 
work created from that use is “transformative.”  To be 
“transformative,” the secondary work must do more 
than “merely supersede[] the objects of the original 
creation”—it must “add[] something new, with a fur-
ther purpose or character, altering the first with a 
new expression, meaning, or message.”  Campbell v. 
Acuff-Rose Music, Inc., 510 U.S. 569, 579 (1994).  By 
contrast, a work is derivative (and, thus, not trans-
formative) if it uses the copyrighted work exactly as it 
was originally used, even if more is added to the orig-
inal expression.   

1. Insofar as “transformation” is concerned, 
Google’s focus on the Android operating system as a 
whole is misplaced.  The Federal Circuit correctly 



 
 

20 

recognized that changing the environment in which 
code is used does not make the use of the code “trans-
formative.”  Pet. App. 35a.  The focus should be on the 
copyrighted work itself—to determine whether “the 
original creation” has taken on a “further purpose or 
different character.”  Campbell, 510 U.S. at 579; TCA 
Television Corp. v. McCollum, 839 F.3d 168, 180 (2d 
Cir. 2016) (“critical inquiry” is “whether the new work 
uses the copyrighted material itself for a new pur-
pose”); Zomba Enters., Inc. v. Panorama Records, Inc., 
491 F.3d 574, 582 (6th Cir. 2007) (“the end-user’s uti-
lization of the product is largely irrelevant”).   

It is classic infringement, not fair use, to take a 
copyrighted work and use it as-is, even if there is new 
expression surrounding the secondary work’s use of 
the copied expression.  “The fair-use privilege under 
§ 107 is not designed to protect lazy appropriators.”  
Kienitz v. Sconnie Nation LLC, 766 F.3d 756, 759 (7th 
Cir. 2014).  For example, in TCA, the Second Circuit 
considered whether a contemporary play’s use of Ab-
bott and Costello sketch “Who’s on First” was suffi-
ciently transformative so as to have a new purpose or 
character.  The play used the sketch exactly as it was 
delivered by Abbott and Costello—but instead having 
the bit performed by two men engaging in quick ver-
bal wordplay, a teen and his sock puppet alter ego de-
livered it instead.  839 F.3d at 176-77.   

The play’s creators argued that the purpose of the 
overall work—the play itself—was different from 
“Who’s on First”:  the former was intended to be a 
“dark comedy” about Bible Belt values, the latter was 
famed “vaudevillian humor.”  Id. at 170.  The court of 
appeals rejected that argument, explaining that “the 
focus of inquiry is not simply on the new work, i.e., on 



 
 

21 

whether that work serves a purpose or conveys an 
overall expression, meaning, or message different 
from the copyrighted material it appropriates.”  Id. at 
180 (citing Campbell, 510 U.S. at 579).  The “critical 
inquiry,” the court observed, was “whether the new 
work uses the copyrighted material itself for a pur-
pose, or imbues it with a character, different from that 
for which it was created.”  Id.  The play used “Who’s 
on First” exactly as Abbott and Costello intended:  a 
comedic exchange that takes advantage of clever 
wordplay.  That is copying, not fair use. 

2.  The fact that Google has added more to Oracle’s 
code does not make its use of that code “transforma-
tive” or “fair.”  Google is still relying on Oracle’s origi-
nal expression—it needs Oracle’s declaring code to 
serve the same purpose that it serves as part of Ora-
cle’s software.  Because of that reliance, Google’s use 
of Oracle’s work is derivative—it has simply “adapted” 
the declaring code by adding more to it, while relying 
on the original expression.  17 U.S.C. § 101 (“deriva-
tive work”); William F. Patry, 4 Patry on Copyright 
§ 10:21 (2019) (derivative works “result in comple-
mentary synergy to the original,” and “[w]here the 
secondary works are, in essence, the original but in a 
different version, the availability of fair use may be 
questioned”).  Google took Oracle’s coded expressions, 
used them exactly as intended, and put together a new, 
finished work using Oracle’s expressions.  That is clas-
sic derivativeness. 

Conceptually, Google’s use of Oracle’s work is no 
different than converting a novel into a television se-
ries that builds on the novel’s plotlines.  There is cer-
tainly unique creative expression in Amazon’s The 
Man in the High Castle, for example.  The show 



 
 

22 

presents the themes, major plot points, and charac-
ters of Philip K. Dick’s novel in a new format.  But it 
also tells new storylines (and introduces new visual 
aesthetics) that were not in the original book.  Sandra 
Gonzalez, How Amazon’s ‘Man in the High Castle’ 
Honors (and Deviates From) Its Source Material, 
Mashable (Oct. 10, 2015), https://mashable.com/2015/
10/10/man-in-the-high-castle-2/.  Yet the television 
show is clearly a derivative of Dick’s novel, as it pre-
sents (and builds on) Dick’s protected expressions in a 
changed form.  See Authors Guild v. Google, Inc., 804 
F.3d 202, 215-16 (2d Cir. 2015) (explaining that deriv-
atives, like “the adaptation of a novel into a movie or 
play,” “generally involve transformations in the na-
ture of changes of form,” and thus do not fall under 
fair use).   

The same is true here:  Google presented Oracle’s 
code in a different form (code for a mobile operating 
system); yet, in that form, Oracle’s expressions did ex-
actly the same thing as it did in the original work.  For 
Google’s use of Oracle’s work to be truly transforma-
tive, the code had to serve an entirely new function.  
Suppose, for example, an artist seeking to portray how 
computers are taking over the world decided to create 
a piece of artwork displaying lines of Oracle’s JAVA 
SE code with the caption “write once, use anywhere.” 
And perhaps that artist flashed lines of declaring code 
that changed over time.  That would truly be putting 
Oracle’s code to a different, potentially transformative 
use.   

Google’s use in this case is considerably different 
from a transformative one, because Google’s “copying 
[was] verbatim, for an identical function or purpose, 
and there [were] no changes to the expressive content 



 
 

23 

or message,” the fact that the surrounding format had 
changed was not enough to make Google’s use a fair 
one.  Pet. App. 37a.  If the copied code serves the same 
purpose as the original, there is no transformation, for 
“there is ‘nothing transformative’ about using an orig-
inal work ‘in the manner it was made to be’ used.”  
TCA, 839 F.3d at 182-83 (quoting On Davis v. Gap, 
Inc., 246 F.3d 152, 174 (2d Cir. 2001)). 

3. Google argues that fair use requires that pro-
grammers be able to take existing code and use their 
own “enormous innovation and creativity” to develop 
new applications for new platforms, and to free devel-
opers from the constraints of “Oracle-approved plat-
forms.”  Google Br. 40.  Missing from Google’s brief is 
any explanation as to why that is an acceptable “pur-
pose.”  It is true that some courts have blessed the cop-
ying of code in the name of “interoperability,” i.e., for 
the development of “new products” for use on “new 
platforms.”  Sony Computer Entm’t Inc. v. Connectix 
Corp., 203 F.3d 596, 606 (9th Cir. 2000); Sega, 977 
F.2d at 1514-15.  But as the Federal Circuit correctly 
pointed out, none of those courts allowed the copied 
code to be used in a finished, competing product—the 
copies were only “intermediate” ones.  Sega, 977 F.2d 
at 1522; see also Pet. App. 32a.  Had Sony and Sega 
involved fact patterns where the copied code was used 
in the finished secondary work, those decisions would 
have impermissibly opened the door for all derivative 
works to be treated as transformative ones, defeating 
the whole point of extending copyright protections to 
derivative works yet to be created.  17 U.S.C. § 106(2); 
see also Kienitz, 766 F.3d at 758 (“To say that a new 
use transforms the work is precisely to say that it is 



 
 

24 

derivative and thus, one might suppose, protected un-
der § 106(2).”).   

B. Fair use looks to whether the copied code 
was “substantial,” which requires more 
than a quantitative comparison. 

Fair use depends on “the amount and substantial-
ity of the portion used in relation to the copyrighted 
work as a whole.”  17 U.S.C. § 107(3).  Google says (at 
46-47) that its use of Oracle’s code was fair because it 
took “less than 0.5% of code in the Java SE libraries.”  
That goes to “amount,” but not “substantiality.”  
Google’s use of Oracle’s code was small but substan-
tial, which is a further reason it was not “fair.” 

The amount of copying alone has never determined 
whether the use of a work is “fair.”  Taking fifty-five 
seconds out of a film that lasts an hour and 29 minutes 
(1.5%) can still be so substantial as to not be “fair.”  
Harper & Row, 471 U.S. at 565.  Instead, the proper 
focus is on “the qualitative nature of the taking.”  Id.  
Imagine missing an entire whodunit film except for 
the last three minutes where the killer is revealed.  
The last three minutes may not be “substantial,” but 
still be highly significant as a qualitative matter. 

On this point, Google’s argument defeats itself:  it 
admits that Oracle’s declaring code was “necessary.”  
Google Br. 47.  Declaring instructions, Google ex-
plains, “are the building blocks of larger, creative com-
puter programs,” such as Oracle’s Java SE software.  
Id. at 23.  Java SE would not function without the in-
structions.  The declarations must therefore be sub-
stantial, even if Google used only a handful of them.  
It is not “fair” to take even a small fraction of what lies 
at the “heart” of a protected work to create a 



 
 

25 

potentially competing work.  Harper & Row, 471 U.S. 
at 564-66.   

C. Using a protected expression for a prod-
uct introduced into a new market is not 
fair use.   

The effect that a secondary work has on the mar-
ket for the original copyrighted work is “undoubtedly 
the single most important element of fair use.”  Id. at 
566.  The market inquiry takes into account “not only 
[] harm to the original but also [] harm to the market 
for derivative works.”  Id. at 568. 

Google’s vision of fair use would always favor a 
new application over an original work, so long as the 
new application is “innovative” in some way.  It con-
tends that the marketability of original works must 
yield to the development of new works—to have it any 
other way would “threaten[] the viability of the inter-
connected software ecosystem.”  Google Br. 28 (quot-
ing Microsoft Cert. Br. 21); see also id. at 49-50 (con-
sidering the impact on an original work’s potential 
markets would “chill a large amount of innovative ex-
pression”).   

But Google fails to recognize that reducing copy-
right protection for original computer programs also 
has the effect of killing innovation.   As CONTU itself 
recognized, “[t]he cost of developing computer pro-
grams is far greater than the cost of their duplication.”  
CONTU Report 11.  As a result, “some form of protec-
tion is necessary to encourage the creation and broad 
distribution of computer programs in a competitive 
market.”  Id.   



 
 

26 

Setting aside the implication for potential mar-
kets, Google would extend its innovation rationale to 
actual markets (and to direct competition).  Google 
states that companies should be able to copy code “to 
create a ‘legitimate competitor.’”  Google Br. 50.  In 
other words, a competitor can take an original work, 
strip out the parts that are most attractive to consum-
ers, and use those parts to create a new application.  
If a competitor purports to offer a better version of 
popular original software, consumers will inevitably 
shift their product preferences, leaving the original 
creator with a reduced share of the market and the 
lion’s share of the development costs.  Brett N. Dorny 
& Michael K. Friedland, Copyrighting “Look and 
Feel”:  Manufacturing Technologies v. CAMS, 3 Harv. 
J. L. & Tech. 195, 196 (1990) (describing the software 
copycat “free rider” problem”). 

That was certainly not what Congress intended, 
given that the fair use statute expressly instructs 
courts to consider “the potential market for . . . the 
copyrighted work.”   17 U.S.C. § 107(4).  Google’s vi-
sion is also irreconcilable with CONTU’s—CONTU 
believed protection was necessary to encourage “broad 
distribution” of the original work.  CONTU Report 11.  
“Broad distribution” would not be possible if fair use 
allows a competitor to steal substantial parts of an 
original work and dress up the stolen code as its own. 

Synopsys has already had a taste of Google’s dim 
view of copyright protection.  When a competitor 
launched a product that copied the commands used in 
Synopsys’ software products, Synopsys lost over $100 
million in sales.  The competitor had clearly captured 
a portion of Synopsys’ market by using Synopsys’ 
code:  the competing software took in $129 million in 



 
 

27 

revenue.  Synopsys eventually defeated the competi-
tor’s fair-use claim and recovered most of its lost share 
of the market.  But under Google’s “innovation first” 
approach to fair use, it would not have been able to do 
so—the competitor could have simply claimed that its 
“new application” was an innovative necessity, even if 
the new application depended on a significant portion 
of Synopsys’ code.   

Google fails to explain how the creation of a “legit-
imate competitor” can be a fair use when the “substan-
tial potential for damage to the marketability of” the 
original work weighs against fair use.  Harper & Row, 
471 U.S. at 569; see also id. at 562 (no fair use purpose 
where the infringing work had “the intended purpose 
of supplanting the copyright holder’s commercially 
valuable right”).  If copycats can run roughshod over 
copyright protection for an original work by claiming 
“competitive fair use,” there will be little incentive for 
developers to innovate, for their work will quickly get 
stolen.  While innovation is important, it cannot come 
at the cost of an author’s right to its “original expres-
sion.”  See Feist, 499 U.S. at 349.  

  



 
 

28 

CONCLUSION 

The judgment of the court of appeals should be af-
firmed. 

Respectfully submitted. 

 
I. NEEL CHATTERJEE 
GOODWIN PROCTER LLP 
601 Marshall Street 
Redwood City, CA 94063 
 

WILLIAM M. JAY 
    Counsel of Record 
ANDREW KIM 
GOODWIN PROCTER LLP 
1900 N Street, N.W. 
Washington, DC 20036 
wjay@goodwinlaw.com 
(202) 346-4000 
 

February 19, 2020 


